3.6.53 \(\int \frac {(f+g x)^2}{(d+e x) (d^2-e^2 x^2)} \, dx\) [553]

Optimal. Leaf size=86 \[ -\frac {(e f-d g)^2}{2 d e^3 (d+e x)}-\frac {(e f+d g)^2 \log (d-e x)}{4 d^2 e^3}+\frac {(e f-d g) (e f+3 d g) \log (d+e x)}{4 d^2 e^3} \]

[Out]

-1/2*(-d*g+e*f)^2/d/e^3/(e*x+d)-1/4*(d*g+e*f)^2*ln(-e*x+d)/d^2/e^3+1/4*(-d*g+e*f)*(3*d*g+e*f)*ln(e*x+d)/d^2/e^
3

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {862, 90} \begin {gather*} \frac {(3 d g+e f) (e f-d g) \log (d+e x)}{4 d^2 e^3}-\frac {(d g+e f)^2 \log (d-e x)}{4 d^2 e^3}-\frac {(e f-d g)^2}{2 d e^3 (d+e x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(f + g*x)^2/((d + e*x)*(d^2 - e^2*x^2)),x]

[Out]

-1/2*(e*f - d*g)^2/(d*e^3*(d + e*x)) - ((e*f + d*g)^2*Log[d - e*x])/(4*d^2*e^3) + ((e*f - d*g)*(e*f + 3*d*g)*L
og[d + e*x])/(4*d^2*e^3)

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 862

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)
^(m + p)*(f + g*x)^n*(a/d + (c/e)*x)^p, x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && EqQ[c
*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && EqQ[m + p, 0]))

Rubi steps

\begin {align*} \int \frac {(f+g x)^2}{(d+e x) \left (d^2-e^2 x^2\right )} \, dx &=\int \frac {(f+g x)^2}{(d-e x) (d+e x)^2} \, dx\\ &=\int \left (\frac {(e f+d g)^2}{4 d^2 e^2 (d-e x)}+\frac {(-e f+d g)^2}{2 d e^2 (d+e x)^2}+\frac {(e f-d g) (e f+3 d g)}{4 d^2 e^2 (d+e x)}\right ) \, dx\\ &=-\frac {(e f-d g)^2}{2 d e^3 (d+e x)}-\frac {(e f+d g)^2 \log (d-e x)}{4 d^2 e^3}+\frac {(e f-d g) (e f+3 d g) \log (d+e x)}{4 d^2 e^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 82, normalized size = 0.95 \begin {gather*} \frac {-(e f+d g)^2 (d+e x) \log (d-e x)+(e f-d g) (2 d (-e f+d g)+(e f+3 d g) (d+e x) \log (d+e x))}{4 d^2 e^3 (d+e x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(f + g*x)^2/((d + e*x)*(d^2 - e^2*x^2)),x]

[Out]

(-((e*f + d*g)^2*(d + e*x)*Log[d - e*x]) + (e*f - d*g)*(2*d*(-(e*f) + d*g) + (e*f + 3*d*g)*(d + e*x)*Log[d + e
*x]))/(4*d^2*e^3*(d + e*x))

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 112, normalized size = 1.30

method result size
default \(\frac {\left (-3 d^{2} g^{2}+2 d e f g +e^{2} f^{2}\right ) \ln \left (e x +d \right )}{4 d^{2} e^{3}}-\frac {d^{2} g^{2}-2 d e f g +e^{2} f^{2}}{2 e^{3} d \left (e x +d \right )}+\frac {\left (-d^{2} g^{2}-2 d e f g -e^{2} f^{2}\right ) \ln \left (-e x +d \right )}{4 d^{2} e^{3}}\) \(112\)
norman \(\frac {-d^{2} g^{2}+2 d e f g -e^{2} f^{2}}{2 d \,e^{3} \left (e x +d \right )}-\frac {\left (d^{2} g^{2}+2 d e f g +e^{2} f^{2}\right ) \ln \left (-e x +d \right )}{4 e^{3} d^{2}}-\frac {\left (3 d^{2} g^{2}-2 d e f g -e^{2} f^{2}\right ) \ln \left (e x +d \right )}{4 e^{3} d^{2}}\) \(113\)
risch \(-\frac {d \,g^{2}}{2 e^{3} \left (e x +d \right )}+\frac {f g}{e^{2} \left (e x +d \right )}-\frac {f^{2}}{2 e d \left (e x +d \right )}-\frac {3 \ln \left (-e x -d \right ) g^{2}}{4 e^{3}}+\frac {\ln \left (-e x -d \right ) f g}{2 e^{2} d}+\frac {\ln \left (-e x -d \right ) f^{2}}{4 e \,d^{2}}-\frac {\ln \left (e x -d \right ) g^{2}}{4 e^{3}}-\frac {\ln \left (e x -d \right ) f g}{2 e^{2} d}-\frac {\ln \left (e x -d \right ) f^{2}}{4 e \,d^{2}}\) \(158\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^2/(e*x+d)/(-e^2*x^2+d^2),x,method=_RETURNVERBOSE)

[Out]

1/4*(-3*d^2*g^2+2*d*e*f*g+e^2*f^2)/d^2/e^3*ln(e*x+d)-1/2/e^3*(d^2*g^2-2*d*e*f*g+e^2*f^2)/d/(e*x+d)+1/4*(-d^2*g
^2-2*d*e*f*g-e^2*f^2)/d^2/e^3*ln(-e*x+d)

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 112, normalized size = 1.30 \begin {gather*} -\frac {{\left (3 \, d^{2} g^{2} - 2 \, d f g e - f^{2} e^{2}\right )} e^{\left (-3\right )} \log \left (x e + d\right )}{4 \, d^{2}} - \frac {{\left (d^{2} g^{2} + 2 \, d f g e + f^{2} e^{2}\right )} e^{\left (-3\right )} \log \left (x e - d\right )}{4 \, d^{2}} - \frac {d^{2} g^{2} - 2 \, d f g e + f^{2} e^{2}}{2 \, {\left (d x e^{4} + d^{2} e^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2/(e*x+d)/(-e^2*x^2+d^2),x, algorithm="maxima")

[Out]

-1/4*(3*d^2*g^2 - 2*d*f*g*e - f^2*e^2)*e^(-3)*log(x*e + d)/d^2 - 1/4*(d^2*g^2 + 2*d*f*g*e + f^2*e^2)*e^(-3)*lo
g(x*e - d)/d^2 - 1/2*(d^2*g^2 - 2*d*f*g*e + f^2*e^2)/(d*x*e^4 + d^2*e^3)

________________________________________________________________________________________

Fricas [A]
time = 1.73, size = 164, normalized size = 1.91 \begin {gather*} -\frac {2 \, d^{3} g^{2} - 4 \, d^{2} f g e + 2 \, d f^{2} e^{2} + {\left (3 \, d^{3} g^{2} - f^{2} x e^{3} - {\left (2 \, d f g x + d f^{2}\right )} e^{2} + {\left (3 \, d^{2} g^{2} x - 2 \, d^{2} f g\right )} e\right )} \log \left (x e + d\right ) + {\left (d^{3} g^{2} + f^{2} x e^{3} + {\left (2 \, d f g x + d f^{2}\right )} e^{2} + {\left (d^{2} g^{2} x + 2 \, d^{2} f g\right )} e\right )} \log \left (x e - d\right )}{4 \, {\left (d^{2} x e^{4} + d^{3} e^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2/(e*x+d)/(-e^2*x^2+d^2),x, algorithm="fricas")

[Out]

-1/4*(2*d^3*g^2 - 4*d^2*f*g*e + 2*d*f^2*e^2 + (3*d^3*g^2 - f^2*x*e^3 - (2*d*f*g*x + d*f^2)*e^2 + (3*d^2*g^2*x
- 2*d^2*f*g)*e)*log(x*e + d) + (d^3*g^2 + f^2*x*e^3 + (2*d*f*g*x + d*f^2)*e^2 + (d^2*g^2*x + 2*d^2*f*g)*e)*log
(x*e - d))/(d^2*x*e^4 + d^3*e^3)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 182 vs. \(2 (75) = 150\).
time = 0.51, size = 182, normalized size = 2.12 \begin {gather*} - \frac {d^{2} g^{2} - 2 d e f g + e^{2} f^{2}}{2 d^{2} e^{3} + 2 d e^{4} x} - \frac {\left (d g - e f\right ) \left (3 d g + e f\right ) \log {\left (x + \frac {- 2 d^{3} g^{2} + d \left (d g - e f\right ) \left (3 d g + e f\right )}{d^{2} e g^{2} - 2 d e^{2} f g - e^{3} f^{2}} \right )}}{4 d^{2} e^{3}} - \frac {\left (d g + e f\right )^{2} \log {\left (x + \frac {- 2 d^{3} g^{2} + d \left (d g + e f\right )^{2}}{d^{2} e g^{2} - 2 d e^{2} f g - e^{3} f^{2}} \right )}}{4 d^{2} e^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**2/(e*x+d)/(-e**2*x**2+d**2),x)

[Out]

-(d**2*g**2 - 2*d*e*f*g + e**2*f**2)/(2*d**2*e**3 + 2*d*e**4*x) - (d*g - e*f)*(3*d*g + e*f)*log(x + (-2*d**3*g
**2 + d*(d*g - e*f)*(3*d*g + e*f))/(d**2*e*g**2 - 2*d*e**2*f*g - e**3*f**2))/(4*d**2*e**3) - (d*g + e*f)**2*lo
g(x + (-2*d**3*g**2 + d*(d*g + e*f)**2)/(d**2*e*g**2 - 2*d*e**2*f*g - e**3*f**2))/(4*d**2*e**3)

________________________________________________________________________________________

Giac [A]
time = 1.01, size = 116, normalized size = 1.35 \begin {gather*} -\frac {{\left (3 \, d^{2} g^{2} - 2 \, d f g e - f^{2} e^{2}\right )} e^{\left (-3\right )} \log \left ({\left | x e + d \right |}\right )}{4 \, d^{2}} - \frac {{\left (d^{2} g^{2} + 2 \, d f g e + f^{2} e^{2}\right )} e^{\left (-3\right )} \log \left ({\left | x e - d \right |}\right )}{4 \, d^{2}} - \frac {{\left (d^{3} g^{2} - 2 \, d^{2} f g e + d f^{2} e^{2}\right )} e^{\left (-3\right )}}{2 \, {\left (x e + d\right )} d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2/(e*x+d)/(-e^2*x^2+d^2),x, algorithm="giac")

[Out]

-1/4*(3*d^2*g^2 - 2*d*f*g*e - f^2*e^2)*e^(-3)*log(abs(x*e + d))/d^2 - 1/4*(d^2*g^2 + 2*d*f*g*e + f^2*e^2)*e^(-
3)*log(abs(x*e - d))/d^2 - 1/2*(d^3*g^2 - 2*d^2*f*g*e + d*f^2*e^2)*e^(-3)/((x*e + d)*d^2)

________________________________________________________________________________________

Mupad [B]
time = 2.70, size = 109, normalized size = 1.27 \begin {gather*} \frac {\ln \left (d+e\,x\right )\,\left (-3\,d^2\,g^2+2\,d\,e\,f\,g+e^2\,f^2\right )}{4\,d^2\,e^3}-\frac {\ln \left (d-e\,x\right )\,\left (d^2\,g^2+2\,d\,e\,f\,g+e^2\,f^2\right )}{4\,d^2\,e^3}-\frac {d^2\,g^2-2\,d\,e\,f\,g+e^2\,f^2}{2\,d\,e^3\,\left (d+e\,x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f + g*x)^2/((d^2 - e^2*x^2)*(d + e*x)),x)

[Out]

(log(d + e*x)*(e^2*f^2 - 3*d^2*g^2 + 2*d*e*f*g))/(4*d^2*e^3) - (log(d - e*x)*(d^2*g^2 + e^2*f^2 + 2*d*e*f*g))/
(4*d^2*e^3) - (d^2*g^2 + e^2*f^2 - 2*d*e*f*g)/(2*d*e^3*(d + e*x))

________________________________________________________________________________________